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Introduction

⇤ It has been shown [1] that an image representation based on a
neurobiological model of simple-complex cells (Hubel and Wiesel
model) is selective and invariant to group transformations and re-
duces the sample complexity of a learning task.
⇤ This project aims to construct an invariant image representation
under changes in illumination.
⇤ We tested for illumination on two data sets: the SUFR data set
[3] containing synthetic faces under 7 illumination conditions and
the extended Yale Face Database B [4] containing images of human
subjects under 64 illumination conditions.

Theoretical framework

G: finite compact group. Equivalence relation between images:
I ⇠ I 0 , 9gi 2 G, I = giI

0. For an image I we have the
image orbit, OI = {g1I, · · · , gMI}, which is uniquely associated
to a probability distribution PI:

Theorem 1 I ⇠ I 0 , OI ⇠ OI 0 , PI = PI 0

Implementing invariance and discriminability

⇤Cramer-World Theorem: probability distributions are uniquely
determined by all of their one dimensional projections

PI ⌘ PI 0 , PhI,ti ⌘ PhI 0,ti

⇤ Group average: Let G a finite compact group. The group

average of any function f : R ! R is

f̄ (x) ⌘
X

i

f (gix)

and we have f̄ (x) = f̄ (gix), 8gi 2 G.

An invariant and selective signature

The following approximates the distribution of the values
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for one template tk:
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8I, I 0 images we have:

Theorem 2 The signature µ(I) = (µ1
1(I), · · · , µK

N(I))

• is invariant i.e. µ(giI) = µ(I), 8gi 2 G

• is selective (among classes) i.e. µ(I) = µ(I 0) iff
I ⇠ I 0

If G is unitary, we have
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) we have only one

orbit of an arbitrary template to implement invariance of an image
seen only once.

Framework for illumination transformations

⇤Contrast Functions: continuous, monotonic, and positive func-
tions acting on an image.

We assume the contrast function e : R2⇥R ! R+ has the follow-
ing properties:

1. e(x, 0) = 1

2. e(x, ⇣)e(x, ⇣ 0) = e(x, ⇣ � ⇣ 0), ⇣, ⇣ 0 2 R+

where � is a group composition. The transformation of an image
I is:

I⇣(x) ⌘ I(x, ⇣) = e(x, ⇣)I(x, 0).

and similarly for template t. We have the following signature for an
image under change in illumination:
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Illumination for the case of face images

For each of the datasets, we let I0 be a face under one illumination
condition and I⇣ be all other illumination conditions of the face.
Our set of templates {tk⇣}, contained faces under all illumination
conditions with tk 6= I.

Illumination for the case of Mondrian images

Let e(x,m) = emx and m = [�0.01, 0.01]. For the illumination
transformation,

e(x,m)I(x) = emxI(x) ⌘ Im(x),

and by theorems 1 and 2 we have the following invariant signature:
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Methods

⇤ Invariance: We calculated the euclidean distance between im-
ages and their transformations. For invariance we tested:

||µ(I0)� µ(I⇣)||2 ⇠ 0

where we fixed 1 template, with µ(I) 2 Rn⇥k, and averaged the
euclidean distance over images and their transformations.

⇤ Selectivity: We calculated the euclidean di↵erence between dif-
ferent images. For selectivity we tested:

||µ(Ii0)� µ(Ij0)||2 ⌧ 0, i 6= j

where we averaged over many templates.

⇤ Control: We defined a “fake orbit” as a set of randomly selected
images from the datasets.

Results

(a) (b)

Figure 1: (a) Example of a face from SUFR dataset and two illumination condi-
tions. (b) Euclidean distances between faces within the same orbit for the true
and fake orbits.

(a) (b)

Figure 2: (a) Example of a face from YaleFace dataset and two illumination
conditions. (b) Euclidean distances between faces within the same orbit for the
true and fake orbits.

(a) (b)

Figure 3: (a) Example of a Mondrian image (top) and strips of the Mondrian
under di↵erent illumination conditions (bottom). (b) Euclidean distance between
images within the same orbit for the true and fake orbits.

Discussion

(a) (b)

Figure 4: (a) Within groups and between groups comparison of faces. Within groups
measured the di↵erence between faces and each of their illuminations (I and each giI).
Between groups measured the di↵erence between di↵erent faces (Ii and Ij). (b) The
ground truth distance matrix. Each block is the within groups comparison, and white
is the between groups compairson.

⇤ Invariance: Results suggest improved invariance compared to the con-
trol for face images but not for Mondrian images.
⇤ Selectivity: Results were inconclusive (see Figure 4).

⇤ Possible explanations:

1. normalization of signatures/other distance metrics

2. limited orbit size (number of transformed images)

3. assumptions made about illumination transformations/models

Summary

We considered a framework for invariance under illumination transforma-
tions of images and tested the theory on real and artificial data. For face
images with a limited number of orbit samples, we observed invariance
but not selectivity. Future work will include finer illumination models and
experiments with more controlled, synthetic light conditions.
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